The worms have their turn

C. elegans is a scientist's dream - easy to grow, easy to feed, and able to produce 300 children. It's already 'won' a Nobel prize for medicine, and now it could help us understand our social lives. Laura Spinney reports

When Sydney Brenner gave his Nobel lecture in December 2002, he doffed his cap to the fourth joint-winner of the prize for physiology or medicine that year. In addition to himself and his two colleagues, John Sulston and Robert Horvitz, Brenner said that the honour should also be shared with
Caenorhabditis elegans, without whom the others could not have made their groundbreaking discoveries.

When Sydney Brenner gave his Nobel lecture in December 2002, he doffed his cap to the fourth joint-winner of the prize for physiology or medicine that year. In addition to himself and his two colleagues, John Sulston and Robert Horvitz, Brenner said that the honour should also be shared with Caenorhabditis elegans, without whom the others could not have made their groundbreaking discoveries.

C. elegans is a barely visible nematode worm that, fully grown, reaches the magnificent length of 1mm. Possessing a fully functioning nervous system that consists of 302 nerve cells, it lives out its brief existence in compost heaps and river banks, sustaining itself on a diet of bacteria. But for Brenner, who in 1963 chose it as a model organism for studying how genes regulate development, the worm was the ultimate lab workhorse. "The animals live in a two-dimensional world feeding on E. coli on the surface of agar plates," he told his audience in Stockholm. "They are easy to grow in bulk, each animal producing about 300 progeny during a cycle."

C. elegans quickly became a star, worthy of comparison with the mouse and the fruit fly for services to science. Brenner's early work linking genetic analysis to cell division and organ development laid the foundations for Sulston and Horvitz to identify key genes controlling that development - genes that have their counterparts in man. Among other things, their work has led to a greater understanding of many human diseases.

But Brenner had still higher hopes for the worm. He wanted to study the roots of behaviour, and realised early on that any attempt to link genes and behaviour would require an intermediate step: understanding how the nervous system is built and works. Since the three scientists made their prizewinning discoveries, the field has made rapid advances in that direction, and the latest was published recently in Nature.

All animals, including humans, react quickly to changes in oxygen in their environment. The drive to reach the right oxygen concentration - 21 per cent of the ambient air for humans - is the strongest there is, says Cori Bargmann of the Howard Hughes Medical Institute and University of California, San Francisco. Oxygen, or the lack of it, has an impact on our behaviour and health in ways that we have barely begun to understand, although we can see it in extreme cases. She points to the insomnia and other unpleasant symptoms of altitude sickness that humans suffer when deprived of oxygen.

But the molecular mechanisms underlying the response to oxygen deprivation are not well understood. All we know about mammals is that regulation of their red-blood-cell count and other physiological responses to changing oxygen levels involve a protein called hypoxia-inducible transcription factor, which increases or decreases the expression of the genes controlling those responses. But there must be something else involved too, because these so-called transcription changes happen too slowly to explain our lightning reactions to either an excess or a lack of oxygen.

Jesse Gray, who works in Bargmann's lab, and David Karow of the University of Michigan, Ann Arbor, have now worked out the mechanism that allows C. elegans to sense oxygen, and have shown the dramatic impact it has on worm behaviour. They believe a similar mechanism could be at work in mammals, including humans. Their discovery happened by chance, since it started with an attempt by Michael Marletta, in whose lab at the University of California, Berkeley, Karow was working at the time, to solve a different puzzle.

Karow and Marletta were interested in guanylate cyclase, a human enzyme that binds to nitric oxide (NO) and is critical for regulating blood pressure. Guanylate cyclase belongs to the same family of proteins as haemoglobin, the oxygen carrier in human blood. Both contain an iron-containing molecule called a haem group that binds the gas molecule. But the haem unit in haemoglobin cannot distinguish between NO and oxygen. So Karow and Marletta wanted to know how it was able to do this in guanylate cyclase, because without that ability, NO regulation could not work.

They realised a clue might lie in the structure and function of guanylate cyclases in other species. But when they came to study the enzyme in C. elegans, their confusion only increased. The haem group looked different from those they were familiar with in mammals, but similar to those in anaerobic bacteria. Unlike anaerobic bacteria, C. elegans requires oxygen to live, so they wondered what possible function the guanylate cyclase could be performing in the worm.

To find out, they teamed up with Gray and Bargmann, who is an expert on the behaviour of C. elegans. She recruited an engineer, Hang Lu, to design a device for measuring the worms' responses to oxygen. Placed over an agar plate populated with bacteria and worms, the small chamber creates a gradient in oxygen concentration from zero to 21 per cent.

To their surprise, they found that the worms naturally gravitated to a concentration of around 6 per cent - much lower than the 21 per cent they are exposed to in the lab. But mutants that lacked a gene coding for one particular guanylate cyclase, GCY-35, responded differently. They showed no striking preference for a low oxygen concentration, and were more likely to stay at higher concentrations. If the worms' optimum concentration is 6 per cent, this may have exposed them to severe oxidative stress - "the same kind of damage you get from radiation fall-out", says Bargmann. The researchers concluded that GCY-35 was acting as a vital oxygen sensor for the animals.

But they actually made two discoveries for the price of one. Bargmann and others have been puzzled for years by a curious behaviour of C. elegans. When feeding on those notorious agar plates, they tend to move frenetically to the perimeter, where they feed in clumps, even burrow into the agar, before slowly dispersing.

She suggests that clumping or aggregation is a survival strategy when the worms find themselves in an environment that is too rich in oxygen. The lawn of bacteria is thickest on the agar plate where the oxygen concentration is highest, at the perimeter, but because both they and the worms that swarm to them are consuming oxygen rapidly, the very act of clumping creates a zone of tolerably low oxygen concentration. Once it is low enough, the worms spread out again. The researchers used Hang's device to artificially manipulate the oxygen concentration, and watched the worms clump on cue, when they were prevented from reaching their preferred low concentrations. By contrast, a change in oxygen concentration from 7 per cent to 21 per cent had little effect on the aggregation behaviour of guanylate-cyclase mutants - because, says Bargmann, their sensing of the shift was damaged.

Marletta says that multicellular life exploded on Earth when plants began "polluting" the atmosphere with oxygen. But there is no reason to assume - as those who have studied C. elegans in the lab have to date - that oxygen-breathing organisms prefer the 21 per cent oxygen content of air. Behavioural adaptations to oxidative stress certainly exist in other species too. "The search for it in other animals is under way," he says, "And we have an approach to looking for it in humans."

But it turns out that this group of researchers was by no means the first to demonstrate a link between social behaviour and oxygen sensing.

Since the Nature paper was accepted, Bargmann has stumbled on a paper published by a British zoologist named Harold Munro Fox in the Journal of General Physiology in 1921. He showed that a simple pond-dwelling organism called Bodo sulcatus also clumped together, and he suspected this behaviour might be related to the oxygen in its environment. But since he was working only a few years after the end of the First World War, he lacked any sophisticated technology for creating artificial oxygen gradients - such as Hang's magic box. Improvising ingeniously, he slipped a leaf under the glass cover through which he was studying his subjects, and shone a light on to it, causing it to photosynthesise and produce oxygen. As the concentration of the gas rose, he watched the creatures seek each other out, and form a defensive clump.

Gradually, other researchers who have taken their inspiration from Brenner and want to understand the fundamentals of social behaviour - the instinct to congregate, for instance, and the biological basis of recognising others like yourself - are becoming aware that they have to first eliminate the strongest drive of all, the need to breathe the right mix of gas. The humble worm, C. elegans, might just shed some light on the complex science of crowd behaviour.

Start your day with The Independent, sign up for daily news emails
Sport
Seth Rollins cashes in his Money in the Bank contract to win the WWE World Heavyweight Championship
WWERollins win the WWE World Heavyweight title in one of the greatest WrestleMania's ever seen
Arts and Entertainment
Louis Theroux: By Reason of Insanity takes him behind the bars again
tvBy Reason of Insanity, TV review
Arts and Entertainment
Cassetteboy's latest video is called Emperor's New Clothes rap
videoThe political parody genius duo strike again with new video
Arts and Entertainment
tvPoldark, TV review
ebooks
ebooksA special investigation by Andy McSmith
  • Get to the point
Latest stories from i100
Have you tried new the Independent Digital Edition apps?
Independent Dating
and  

By clicking 'Search' you
are agreeing to our
Terms of Use.

iJobs Job Widget
iJobs General

Recruitment Genius: Junior Web Designer - Client Liaison

£6 per hour: Recruitment Genius: This is an exciting opportunity to join a gro...

Recruitment Genius: Service Delivery Manager

Negotiable: Recruitment Genius: A Service Delivery Manager is required to join...

Recruitment Genius: Massage Therapist / Sports Therapist

£12000 - £24000 per annum: Recruitment Genius: A opportunity has arisen for a ...

Ashdown Group: Practice Accountant - Bournemouth - £38,000

£32000 - £38000 per annum: Ashdown Group: A successful accountancy practice in...

Day In a Page

No postcode? No vote

Floating voters

How living on a houseboat meant I didn't officially 'exist'
Louis Theroux's affable Englishman routine begins to wear thin

By Reason of Insanity

Louis Theroux's affable Englishman routine begins to wear thin
Power dressing is back – but no shoulderpads!

Power dressing is back

But banish all thoughts of Eighties shoulderpads
Spanish stone-age cave paintings 'under threat' after being re-opened to the public

Spanish stone-age cave paintings in Altamira 'under threat'

Caves were re-opened to the public
'I was the bookies’ favourite to be first to leave the Cabinet'

Vince Cable interview

'I was the bookies’ favourite to be first to leave the Cabinet'
Election 2015: How many of the Government's coalition agreement promises have been kept?

Promises, promises

But how many coalition agreement pledges have been kept?
The Gaza fisherman who built his own reef - and was shot dead there by an Israeli gunboat

The death of a Gaza fisherman

He built his own reef, and was fatally shot there by an Israeli gunboat
Saudi Arabia's airstrikes in Yemen are fuelling the Gulf's fire

Saudi airstrikes are fuelling the Gulf's fire

Arab intervention in Yemen risks entrenching Sunni-Shia divide and handing a victory to Isis, says Patrick Cockburn
Zayn Malik's departure from One Direction shows the perils of fame in the age of social media

The only direction Zayn could go

We wince at the anguish of One Direction's fans, but Malik's departure shows the perils of fame in the age of social media
Young Magician of the Year 2015: Meet the schoolgirl from Newcastle who has her heart set on being the competition's first female winner

Spells like teen spirit

A 16-year-old from Newcastle has set her heart on being the first female to win Young Magician of the Year. Jonathan Owen meets her
Jonathan Anderson: If fashion is a cycle, this young man knows just how to ride it

If fashion is a cycle, this young man knows just how to ride it

British designer Jonathan Anderson is putting his stamp on venerable house Loewe
Number plates scheme could provide a licence to offend in the land of the free

Licence to offend in the land of the free

Cash-strapped states have hit on a way of making money out of drivers that may be in collision with the First Amendment, says Rupert Cornwell
From farm to fork: Meet the Cornish fishermen, vegetable-growers and butchers causing a stir in London's top restaurants

From farm to fork in Cornwall

One man is bringing together Cornwall's most accomplished growers, fishermen and butchers with London's best chefs to put the finest, freshest produce on the plates of some of the country’s best restaurants
Robert Parker interview: The world's top wine critic on tasting 10,000 bottles a year, absurd drinking notes and New World wannabes

Robert Parker interview

The world's top wine critic on tasting 10,000 bottles a year, absurd drinking notes and New World wannabes
Don't believe the stereotype - or should you?

Don't believe the stereotype - or should you?

We exaggerate regional traits and turn them into jokes - and those on the receiving end are in on it too, says DJ Taylor