The Independent’s journalism is supported by our readers. When you purchase through links on our site, we may earn commission.

Nasa to test 'flying saucer' Mars lander in Hawaii as preparation for manned missions

The new Low Density Supersonic Decelerator will be dropped from 55km to test a new method designed to safely land heavier payloads

James Vincent
Saturday 12 April 2014 08:08
Comments
Journalists dressed in special suits are briefed inside the Clean Room at Nasa's Jet Propulsion Laboratory in Pasadena, California on the agency's Low Density Supersonic Decelerator (LDSD) project on April 9, 2014.
Journalists dressed in special suits are briefed inside the Clean Room at Nasa's Jet Propulsion Laboratory in Pasadena, California on the agency's Low Density Supersonic Decelerator (LDSD) project on April 9, 2014.

Nasa has announced that it will begin tests of a new ‘flying saucer’ that could one day help land people on Mars.

Unfortunately for conspiracy buffs, this isn’t the space agency finally confessing to developing those classic-look UFOs that plagued rural types in 1950s America, but the public’s first look at a new type of planetary lander known as the Low Density Supersonic Decelerator (LDSD).

This June, residents of the tiny Hawaiian island of Kauai will be treated to the unusual sight of this vehicle plummeting to the surface of the ocean after being hauled up to a height of 55 kilometres through a combination of rockets and high-altitude balloons.

The LDSD will fall from this height with its descent slowed from a speed of Mach 3.5 to lower than Mach 2 through a combination of inflatable discs and single giant parachute which will drastically increase the craft’s atmospheric drag.

It’s hoped that this technology will allow Nasa to land even larger payloads on the surface of Mars – a planet whose thin atmosphere (its only 1 per cent as dense as Earth’s) makes touching down without a bang extremely difficult.

The design of the LDSD was inspired by the Hawaiian puffer fish which increase size without adding mass. Image: Getty

"It may seem obvious, but the difference between landing and crashing is stopping," Allen Chen from Nasa’s Jet Propulsion Laboratory told New Scientist. “We really only have two options for stopping at Mars: rockets and aerodynamic drag."

Nasa’s current landing techniques have been in use since the 1976 Viking mission which deployed parachutes and rockets to safely drop a pair of landers on Mars. However, as these robots get heavier and more complex scientists are having difficulty ensuring their safe descent.

The car-sized Curiosity rover weighed just under a tonne but Nasa calculates that future manned missions could require anything between 40 to 100 times heavier loads. Rockets powerful enough to slow down this sort of load would end up destabilising the craft. This is bad enough when you’re risking a $2 billion lander like Curiosity, but out of the question if humans are the payload.

LDSD is attempting to solve this quandary through the use of balloon-like cushions that would rapidly inflate around the payload, increasing its surface area and consequently its atmospheric drag. A 33.5-metre parachute could then be safely deployed once the craft has been slowed.

Nasa thinks this design could support payloads between 1 and 10 times heavier than Curisioty and will be testing the system over the next couple of years.

Register for free to continue reading

Registration is a free and easy way to support our truly independent journalism

By registering, you will also enjoy limited access to Premium articles, exclusive newsletters, commenting, and virtual events with our leading journalists

Please enter a valid email
Please enter a valid email
Must be at least 6 characters, include an upper and lower case character and a number
Must be at least 6 characters, include an upper and lower case character and a number
Must be at least 6 characters, include an upper and lower case character and a number
Please enter your first name
Special characters aren’t allowed
Please enter a name between 1 and 40 characters
Please enter your last name
Special characters aren’t allowed
Please enter a name between 1 and 40 characters
You must be over 18 years old to register
You must be over 18 years old to register
Opt-out-policy
You can opt-out at any time by signing in to your account to manage your preferences. Each email has a link to unsubscribe.

By clicking ‘Create my account’ you confirm that your data has been entered correctly and you have read and agree to our Terms of use, Cookie policy and Privacy notice.

This site is protected by reCAPTCHA and the Google Privacy policy and Terms of service apply.

Already have an account? sign in

By clicking ‘Register’ you confirm that your data has been entered correctly and you have read and agree to our Terms of use, Cookie policy and Privacy notice.

This site is protected by reCAPTCHA and the Google Privacy policy and Terms of service apply.

Register for free to continue reading

Registration is a free and easy way to support our truly independent journalism

By registering, you will also enjoy limited access to Premium articles, exclusive newsletters, commenting, and virtual events with our leading journalists

Already have an account? sign in

By clicking ‘Register’ you confirm that your data has been entered correctly and you have read and agree to our Terms of use, Cookie policy and Privacy notice.

This site is protected by reCAPTCHA and the Google Privacy policy and Terms of service apply.

Join our new commenting forum

Join thought-provoking conversations, follow other Independent readers and see their replies

Comments

Thank you for registering

Please refresh the page or navigate to another page on the site to be automatically logged inPlease refresh your browser to be logged in