Large Hadron Collider sets smashing record, ready to delve into mysteries of the universe

Scientists managed to slam protons together at 13 tera-electron volts for the first time

Researchers at the Large Hadron Collider have smashed particles together harder than ever before, ahead of its plans to solve some of the deepest mysteries of the universe when it starts collecting data next month.

The scientists managed to slam protons together at 13 tera-electron volts for the first time.

The LHC, which is the most powerful atom smasher ever built, was restarted in April and is getting ready to harvest data that might solve the mysteries of dark matter, among other questions. Until then it had been switched off for an upgrade that took two years.

Two beams of particles travelling a whisker below the speed of light were sent flying in opposite directions through 27 kilometres (16.7 miles) of circular underground tunnels straddling the Swiss-French border.

But the beam energy has only now been ramped up to its operating level of 13 TeV, almost twice the power used to uncover the Higgs boson two years ago.

The LHC team astounded the world with the discovery of the elementary particle that gives other particles mass, which had eluded detection for nearly 50 years.

With the ability to tap into higher energy, the scientists hope to explore mysterious realms of "new physics" that could yield evidence of hidden extra dimensions and dark matter.

Dark matter is the invisible, undetectable "stuff" that makes up 84% of material in the universe and binds galaxies together yet whose nature is unknown.

Professor Jonathan Butterworth, from University College London, who works on the LHC's Atlas detector, said: "Possibly the biggest question we'd like an an answer to is, what is the dark matter which makes up most of the mass of the universe? Maybe we can actually make some at these new energies.

"Going to higher energy with the LHC is effectively turning up the power on the world's biggest microscope - and we are eager to see what that might reveal."

Protons race around the LHC beam tunnels at just three metres per second below the speed of light.

The energy released when they collide together is used to spark the creation of new particles.

Albert Einstein's famous equation E = MC squared showed that energy and mass are interchangeable. Upping the energy levels at the LHC increases the chances of some of it being converted to previously undetected, heavier particles - possibly including dark matter.

The particle collisions take place in four detectors arranged around the beam ring known as Atlas, CMS, Alice and LHCb.

At an earlier briefing at Cern, the European organisation for nuclear research in Geneva, Atlas team leader Professor David Charlton, from the University of Birmingham, said: "We're heading for unexplored territory. It's going to be a new era for science."

As well as searching for dark matter, LHC scientists also hope to create more and possibly different strains of Higgs boson, investigate antimatter, and test the theory of "supersymmetry" which predicts that every known particle has a more massive hidden partner.

Supersymmetry seeks to fill gaps in the "Standard Model", the all-encompassing blueprint of particles and forces in the universe that has been in place since the 1970s.

Additional reporting by Press Association

Comments