'Human brain' supercomputer switched on to unlock secrets of the mind

'We’ve essentially created a machine that works more like a brain than a traditional computer, which is extremely exciting,' says Professor Steve Furber

Anthony Cuthbertson
Friday 02 November 2018 01:05
Comments
Professor Steve Furber explains the SpiNNaker machine and Manchester's role in the Human Brain Project

After 12 years of construction and £15m in funding, a giant computer designed to mimic the human brain is finally ready to be switched on.

Built by the University of Manchester, the SpiNNaker machine is made up of one million processors capable of 200 trillion actions per second – meaning it can model more biological neurons in real time than any other machine ever built.

Unlike traditional computers, it does not communicate by sending large amounts of information from point A to point B via a standard network. Instead, it mimics the parallel communication architecture of the brain by sending small amounts of information to different destinations simultaneously.

"We’ve essentially created a machine that works more like a brain than a traditional computer, which is extremely exciting," said Steve Furber, professor of computer engineering at the University of Manchester. “The ultimate objective for the project has always been a million cores in a single computer for real time brain modelling applications, and we have now achieved it, which is fantastic.”

Short for Spiking Neural Network Architecture, the SpiNNaker is the first step towards creating a model of a billion biological neurons in real time, although even in its current state it will provide unprecedented insight into how the human brain works.

It will do this by running large-scale, real-time simulations of various regions of the brain, such as the Basal Ganglia – an area affected in Parkinson's disease.

The SpiNNaker machine took 12 years to build and features one million processors

It can also be adapted to power an artificial intelligence robot called the SpOmnibot, which is capable of navigating and interpretting objects in the real world.

"Neuroscientists can now use SpiNNaker to help unlock some of the secrets of how the human brain works by running unprecedentedly large scale simulations," Professor Furber said. "It also works as real-time neural simulator that allows roboticists to design large scale neural networks into mobile robots so they can walk, talk and move with flexibility and low power."

Register for free to continue reading

Registration is a free and easy way to support our truly independent journalism

By registering, you will also enjoy limited access to Premium articles, exclusive newsletters, commenting, and virtual events with our leading journalists

Please enter a valid email
Please enter a valid email
Must be at least 6 characters, include an upper and lower case character and a number
Must be at least 6 characters, include an upper and lower case character and a number
Must be at least 6 characters, include an upper and lower case character and a number
Please enter your first name
Special characters aren’t allowed
Please enter a name between 1 and 40 characters
Please enter your last name
Special characters aren’t allowed
Please enter a name between 1 and 40 characters
You must be over 18 years old to register
You must be over 18 years old to register
Opt-out-policy
You can opt-out at any time by signing in to your account to manage your preferences. Each email has a link to unsubscribe.

Already have an account? sign in

By clicking ‘Register’ you confirm that your data has been entered correctly and you have read and agree to our Terms of use, Cookie policy and Privacy notice.

This site is protected by reCAPTCHA and the Google Privacy policy and Terms of service apply.

Join our new commenting forum

Join thought-provoking conversations, follow other Independent readers and see their replies

Comments

Thank you for registering

Please refresh the page or navigate to another page on the site to be automatically logged in