Cell breakthrough for Alzheimer's

Pa
Friday 04 March 2011 14:53
Comments

Brain cells that play a critical role in Alzheimer's disease have been created in the laboratory by scientists.

The stem cell breakthrough has been hailed as an important advance in Alzheimer's research, allowing a limitless supply of neurons on which to test new drugs.

Potentially the work could also pave the way to cell treatments - transplanting healthy lab-grown neurons into the brains of patients.

British charity the Alzheimer's Society called the research "a major step forward in developing treatments for Alzheimer's".

Scientists at Northwestern University in Chicago produced the neurons from stem cells extracted from early stage human embryos. Embryonic stem cells have the potential to develop into virtually any kind of tissue in the body.

The "cholinergic" neurons are a special type that help the hippocampus region of the brain to retrieve memories.

It is these brain cells that die off early in Alzheimer's disease. The brain has a relatively small population of the neurons, and their loss has a swift and devastating impact on a patient's recall ability.

Lead researcher Christopher Bissonnette spent six years cracking the genetic code of the stem cells to create the neurons. He was motivated by his grandfather's death from Alzheimer's.

"This technique to produce neurons allows for an almost infinite number of these cells to be grown in labs, allowing other scientists the ability to study why this one population of cells selectively dies in Alzheimer's disease," he said.

The scientists had to switch on an exact sequence of genes to coax the stem cells into making the transformation into cholinergic neurons.

When the artificially produced neurons were transplanted into the brains of mice, they functioned normally. The cells sprouted connecting fibres to the hippocampus and pumped out acetylcholine, a chemical needed for retrieving memories from other parts of the brain.

The research, published in the journal Stem Cells, will make the rapid screening of thousands of potential Alzheimer's drugs possible for the first time.

Promising compounds can be tested over and over again on the laboratory-grown neurons, side-stepping the laborious process of observing their effects on laboratory mice.

Register for free to continue reading

Registration is a free and easy way to support our truly independent journalism

By registering, you will also enjoy limited access to Premium articles, exclusive newsletters, commenting, and virtual events with our leading journalists

Already have an account? sign in

By clicking ‘Register’ you confirm that your data has been entered correctly and you have read and agree to our Terms of use, Cookie policy and Privacy notice.

This site is protected by reCAPTCHA and the Google Privacy policy and Terms of service apply.

Join our new commenting forum

Join thought-provoking conversations, follow other Independent readers and see their replies

Comments

Thank you for registering

Please refresh the page or navigate to another page on the site to be automatically logged inPlease refresh your browser to be logged in