Biological computer that 'lives' inside the body comes one step closer as scientists make transistor out of DNA and RNA

Finding could lead to new biodegradable devices based on living cells that are capable of detecting changes in the environment

Steve Connor
Thursday 28 March 2013 19:00
Comments
Scientists are closer to building a biological computer after they managed to make a transistor from DNA and RNA
Scientists are closer to building a biological computer after they managed to make a transistor from DNA and RNA

Scientists believe they are close to building the first truly biological computer made from the organic molecules of life and capable of working within the living cells of organisms ranging from microbes to man.

The researchers said that they have made a transistor – the critical switch at the heart of all computers – from DNA and RNA, the two biological molecules that store the information necessary for living things to replicate and grow.

Silicon transistors control the direction of flow of electrical impulses within computer chips, but the biological transistor controls the movement of an enzyme called RNA polymerase along a strand of the DNA molecule, the scientists said.

Ultimately, the aim is to use the biological transistors – called transcriptors – to make simple but extremely small biological computers that could be programmed to monitor and perhaps affect the functioning of the living cells in which they operate, researchers said.

It could lead to new biodegradable devices based on living cells that are capable of detecting changes in the environment, or intelligent microscopic vehicles for delivering drugs within the body, or a biological monitor for counting number of times a human cell divides so that the device could destroy the cell if it became cancerous, the scientists said.

“Biological computers can be used to study and reprogram living systems, monitor environments and improve cellular therapeutics,” said Drew Endy, assistant professor of bioengineering at Stanford University in California, who led the study published in the journal Science.

Last year, Professor Endy announced new ways of using biological molecules to store information and to transmit data from one cell to another. The latest study adds the third critical component of computing – a biological transistor that acts as a “logic gate” to determine whether a biochemical question is true or false.

Logic gates are critical for a computer to function properly. In a biological setting the use of logical data processing is almost as limitless as its use in conventional electronic computing, said Jerome Bonnet, a bioengineer within the Endy laboratory, and the lead author of the study.

“You could test whether a given cell had been exposed to any number of external stimuli – the presence of glucose and caffeine for instance. [Logic] gates would allow you to make the determination and store that information so you could easily identify those which had been exposed and which had not,” Dr Bonnet said.

Biological computers have been the dream of electronic engineers for decades because they open the possibility of a new generation of ultra-small, ultra-fast devices that could be incorporated into the machinery of living organisms.

“For example, suppose we could partner with microbes and plants to record events, natural or otherwise, and convert this information into easily observed signals. That would greatly expand our ability to monitor the environment,” Professor Endy said.

“So the future of computing need not only be a question of putting people and things together with ubiquitous silicon computers. The future will be much richer if we can imagine new modes of computing in new places and with new materials – and then find ways to bring those new modes to life,” he said.

Register for free to continue reading

Registration is a free and easy way to support our truly independent journalism

By registering, you will also enjoy limited access to Premium articles, exclusive newsletters, commenting, and virtual events with our leading journalists

Please enter a valid email
Please enter a valid email
Must be at least 6 characters, include an upper and lower case character and a number
Must be at least 6 characters, include an upper and lower case character and a number
Must be at least 6 characters, include an upper and lower case character and a number
Please enter your first name
Special characters aren’t allowed
Please enter a name between 1 and 40 characters
Please enter your last name
Special characters aren’t allowed
Please enter a name between 1 and 40 characters
You must be over 18 years old to register
You must be over 18 years old to register
Opt-out-policy
You can opt-out at any time by signing in to your account to manage your preferences. Each email has a link to unsubscribe.

Already have an account? sign in

By clicking ‘Register’ you confirm that your data has been entered correctly and you have read and agree to our Terms of use, Cookie policy and Privacy notice.

This site is protected by reCAPTCHA and the Google Privacy policy and Terms of service apply.

Join our new commenting forum

Join thought-provoking conversations, follow other Independent readers and see their replies

Comments

Thank you for registering

Please refresh the page or navigate to another page on the site to be automatically logged in